<- rnorm(n = 1000, mean = 0, sd = 1)
x head(x)
[1] -1.09608717 0.16152924 -0.71526323 -0.88594076 0.62002611 0.01948096
hist(x)
rnorm
and friendsset.seed
replicate
Mit replicate(R, BEFEHL, simplify = FALSE)
können wir einen Befehl sehr einfach R
mal wiederholen. Wir könnten stattdessen auch einen for-Loop verwenden, aber zumindest für einfache Beispiele ist replicate
oft praktischer.
lapply
Mit lapply(LISTE, FUN = FUNKTION)
können wir eine FUNKTION
auf jedes Element von LISTE
anwenden. Das Ergebnis von lapply
ist wieder eine Liste mit der gleichen Länge wie LISTE
. Die Elemente der Liste sind die Ergebnisse von FUNKTION
, angewendet auf die entsprechenden Elemente in LISTE
. Wenn wir die Liste in einen Vektor überführen wollen, können wir die Funktion unlist()
verwenden.
Nehmen Sie an, das Merkmal Intelligenz ist in der Population normalverteilt mit den Parametern \(\mu = 100\) und \(\sigma = 15\).
R = 100000
Stichproben der Größe n = 100
.pnorm()
unter Berücksichtigung der Verteilung der Schätzfunktion).# Ziehe R Stichproben der Größe n
R <- 100000
n <- 100
set.seed(1)
x_list <- replicate(R, rnorm(n = n, mean = 100, sd = sqrt(225)), simplify = FALSE)
str(x_list)
List of 100000
$ : num [1:100] 90.6 102.8 87.5 123.9 104.9 ...
$ : num [1:100] 90.7 100.6 86.3 102.4 90.2 ...
$ : num [1:100] 106.1 125.3 123.8 95 65.7 ...
$ : num [1:100] 113.4 84.3 129.6 94.2 124.8 ...
$ : num [1:100] 116.1 128.4 91 94.1 93.8 ...
$ : num [1:100] 101.2 95.5 82.3 100.2 114.9 ...
$ : num [1:100] 94.9 122.5 107.9 108.1 97.9 ...
$ : num [1:100] 89.4 129.6 98.7 99.8 83.1 ...
$ : num [1:100] 83.7 72.6 114.9 99.8 91 ...
$ : num [1:100] 76.9 102.9 104 83.2 109.8 ...
$ : num [1:100] 117 116.7 86.9 103.2 101 ...
$ : num [1:100] 103.6 83 122.3 96.3 102.8 ...
$ : num [1:100] 76.6 128.8 72.1 68.4 110.5 ...
$ : num [1:100] 105.1 119.7 85.6 81.9 123.5 ...
$ : num [1:100] 123.2 102.7 95.8 88.5 91.4 ...
$ : num [1:100] 112.8 86.1 113.4 85.9 108.1 ...
$ : num [1:100] 105.2 100.2 86.9 105.1 97.3 ...
$ : num [1:100] 124.3 95.1 65.1 132.9 83.8 ...
$ : num [1:100] 110.7 108.7 97.8 122.6 95.8 ...
$ : num [1:100] 91.4 104.3 117.2 102.1 101.3 ...
$ : num [1:100] 86.7 71.2 124.3 107.8 99.2 ...
$ : num [1:100] 79.9 99.3 132.8 121.3 102.7 ...
$ : num [1:100] 113.8 112.1 89.3 59.7 91.5 ...
$ : num [1:100] 95.3 103.1 90.2 82.7 107.9 ...
$ : num [1:100] 94.4 114.9 101.5 122.2 108.4 ...
$ : num [1:100] 72.9 89.8 92.9 115.4 91 ...
$ : num [1:100] 114 112 101 100 123 ...
$ : num [1:100] 93.9 129.1 107.3 97 82.5 ...
$ : num [1:100] 68.4 98.7 111.3 76.3 110.6 ...
$ : num [1:100] 111.7 99.3 101.4 80 108.2 ...
$ : num [1:100] 111.1 105.8 119.4 87.9 76 ...
$ : num [1:100] 104.7 102.5 114.4 98 99.3 ...
$ : num [1:100] 98.3 112.8 97.2 121.4 131.2 ...
$ : num [1:100] 93.3 89.9 106.2 91.2 80.9 ...
$ : num [1:100] 84.3 93.6 96.5 117.9 108.1 ...
$ : num [1:100] 107.8 105.7 90.6 91.4 104.7 ...
$ : num [1:100] 125.9 87.8 74.6 122.4 110.6 ...
$ : num [1:100] 113 77.7 94 90.4 103.2 ...
$ : num [1:100] 89.1 96.3 90.8 101.6 88 ...
$ : num [1:100] 104 102 112 113 105 ...
$ : num [1:100] 83 111.5 108.6 79.7 69.6 ...
$ : num [1:100] 106.1 106.4 83.5 95 103.5 ...
$ : num [1:100] 77.8 115.4 66.7 75.4 105.4 ...
$ : num [1:100] 93.9 115 85.5 111.4 101.2 ...
$ : num [1:100] 87.4 106.7 94.5 108.1 87.9 ...
$ : num [1:100] 123.4 89.1 77.4 91.5 68.4 ...
$ : num [1:100] 90.6 78.6 101.9 91.4 101.5 ...
$ : num [1:100] 99.3 108.5 110.4 118.6 99 ...
$ : num [1:100] 82.9 117.6 92.9 124.7 95.1 ...
$ : num [1:100] 68.2 90.1 104.8 98.5 99.4 ...
$ : num [1:100] 77.3 109.4 74.8 117.7 116.8 ...
$ : num [1:100] 113.2 120.7 120.1 88.7 95.5 ...
$ : num [1:100] 106.9 124.7 119.7 102.6 89.5 ...
$ : num [1:100] 78.3 110.2 100.7 101.2 98.2 ...
$ : num [1:100] 105.2 114.3 66.6 88.4 98.9 ...
$ : num [1:100] 82.9 85.7 124.3 102.5 86.4 ...
$ : num [1:100] 110.4 97.1 106.4 108.4 87.3 ...
$ : num [1:100] 95 88.7 100.4 96.8 87.9 ...
$ : num [1:100] 98 95.4 107.2 104.3 93.4 ...
$ : num [1:100] 99.8 113.5 87.1 51.5 97.8 ...
$ : num [1:100] 90.7 83.4 67.4 99.5 96.1 ...
$ : num [1:100] 117.5 130.3 96 98.8 96.1 ...
$ : num [1:100] 81.6 102.2 92.1 105.1 101.6 ...
$ : num [1:100] 100.9 108.5 108 85.9 107 ...
$ : num [1:100] 106.5 97 113.9 79.5 77.4 ...
$ : num [1:100] 113.3 94.3 101.7 74.1 111.2 ...
$ : num [1:100] 95.6 114.2 85.5 80.7 119.7 ...
$ : num [1:100] 113 103.8 89.3 108.8 124.7 ...
$ : num [1:100] 102.3 109 86.1 95.4 88.5 ...
$ : num [1:100] 112 103 119 109 104 ...
$ : num [1:100] 80.1 114.3 112.9 115.9 94.7 ...
$ : num [1:100] 96.9 69.8 84.5 97 103.1 ...
$ : num [1:100] 101.1 106.8 97.6 112.7 99.6 ...
$ : num [1:100] 118.5 125.5 93.3 93.6 105.1 ...
$ : num [1:100] 110.4 78.2 101.9 75.8 112.9 ...
$ : num [1:100] 88.1 109.1 84.1 115.3 102.7 ...
$ : num [1:100] 117.9 99.5 112.1 87 100.2 ...
$ : num [1:100] 86.4 87.1 122.9 95.1 90.2 ...
$ : num [1:100] 108.4 94.4 89 100.8 90.6 ...
$ : num [1:100] 81.6 105.4 120.5 123.4 80.3 ...
$ : num [1:100] 104 87.6 78.1 125.3 76.8 ...
$ : num [1:100] 92.9 97.8 107.7 109.6 100.3 ...
$ : num [1:100] 104 85 151 106 135 ...
$ : num [1:100] 91.1 66.3 108.1 75.8 100.2 ...
$ : num [1:100] 125.1 96.5 99.8 104.3 96.6 ...
$ : num [1:100] 114.9 99 103.9 90.7 88.4 ...
$ : num [1:100] 79.8 107.8 115.1 111.4 107.2 ...
$ : num [1:100] 102 105 104 108 124 ...
$ : num [1:100] 114.5 77.1 118.3 95.2 108.5 ...
$ : num [1:100] 83.2 101.8 96.2 86 87.8 ...
$ : num [1:100] 81.7 85.8 101.4 110.5 110.1 ...
$ : num [1:100] 117.3 119.7 76.5 101.3 99.4 ...
$ : num [1:100] 89.1 99.2 144.4 94.2 89.2 ...
$ : num [1:100] 91.2 107.4 90.9 94.6 93 ...
$ : num [1:100] 116.6 103.1 88.4 98.7 81.1 ...
$ : num [1:100] 119.5 78.6 103.6 96.8 101.2 ...
$ : num [1:100] 116.5 86.5 82.9 111.5 83.9 ...
$ : num [1:100] 110.9 83.8 96 92.5 77 ...
$ : num [1:100] 84.9 82.2 82.2 116.1 85.6 ...
[list output truncated]
# Berechne für jede Stichprobe den Schätzwert (also den Mittelwert)
means_list <- lapply(x_list, mean)
means <- unlist(means_list)
# Plotte die Verteilung der Schätzwerte
hist(means)
[1] 100.0061
[1] 2.244553
[1] 1.498183
[1] 1.5
[1] 0.49448
# Berechne die wahre Wahrscheinlichkeit
pnorm(101, mean = 100, sd = sqrt(225/n)) - pnorm(99, mean = 100, sd = sqrt(225/n))
[1] 0.4950149
Fazit:
Nehmen Sie erneut an, das Merkmal Intelligenz ist in der Population normalverteilt mit den Parametern \(\mu = 100\) und \(\sigma = 15\).
# Berechne für jede Stichprobe ein KI
ki <- function(x){
t.test(x, conf.level = 0.95)$conf.int
}
kis <- lapply(x_list, ki)
str(kis)
List of 100000
$ : num [1:2] 99 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.6 102.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 103.5
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.8 103.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.9 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.5 102.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 93.8 100.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.7 103.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.9 103.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.9 103.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.8 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.8 100.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 100 107
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.8 100
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.1 104.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.6 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.6 101.5
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.2 102.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.9 105.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.7 102
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.7 101
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.6 104.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.5 102.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.9 104.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.6 103.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.7 99.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.3 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.7 104.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.8 104.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.7 105.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.7 104.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.8 105.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.1 104.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.6 102.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 103.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.2 101.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.5 100.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.7 103.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.9 102
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.9 102.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.3 102.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96 103
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.2 103.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.5 100.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 100 105
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.4 102.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.4 102
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.4 101.5
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.4 101.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.3 103.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.1 102.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.7 102.5
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95 101
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.4 104.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.7 100.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.2 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.2 102.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.7 104.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.8 101.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.5 103.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.9 104.2
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.6 100.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 99.8 105.5
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98 104
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.3 100.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.3 101
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.3 102.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97 102
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.5 100.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 99.6 105.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.3 103.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.8 103.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.7 102.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.4 102.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.7 103.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.3 102.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.1 102.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.6 102.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.5 104.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.9 101.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94 100
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.7 102.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 94.9 100.7
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98 103
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 102.9
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 100 106
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 102.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.4 103
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.2 104.3
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 95.9 101.4
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 98.4 104.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.3 103.1
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.5 102.8
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 97.5 103.6
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 96.2 102
..- attr(*, "conf.level")= num 0.95
[list output truncated]
# Überprüfe für jedes KI, ob das wahre mu enthalten ist
hit <- function(ki, mu = 100){
mu > ki[1] & mu < ki[2]
}
hits <- unlist(lapply(kis, hit))
str(hits)
logi [1:100000] TRUE TRUE TRUE TRUE TRUE TRUE ...
[1] 0.95106
[1] 0.95106
Fazit:
Angenommen, die Intelligenz ist eigentlich in der Population gumbelverteilt mit Location-Parameter \(\mu = 100\) und Scale-Parameter \(\beta = 15\). Auf den ersten Blick sieht die Gumbelverteilung mit diesen Parametern vielleicht ein bisschen ähnlich aus als die Normalverteilung mit \(\mu = 100\) und \(\sigma = 15\), jedoch ist die Gumbelverteilung nicht symmetrisch:
library(ordinal)
curve(dgumbel(x, location = 100, scale = 15), from = 70, to = 160,
xlab = "x", ylab = "f(x)")
Überlegen Sie sich mithilfe einer Datensimulation, was passiert wenn das Merkmal eigentlich gumbelverteilt ist, Sie aber bei der Parameterschätzung annehmen, das Merkmal wäre normalverteilt.
# Paket laden um aus der Gumbelverteilung simulieren zu können (rgumbel)
library(ordinal)
# Ziehe R Stichproben der Größe n
R <- 100000
n <- 100
set.seed(1)
x_list <- replicate(R, rgumbel(n = n, location = 100, scale = 15), simplify = FALSE)
# Berechne für jede Stichprobe den Schätzwert (also den Mittelwert)
means_list <- lapply(x_list, mean)
means <- unlist(means_list)
# Plotte die Verteilung der Schätzwerte
hist(means)
[1] 108.6571
[1] 1.924966
# Berechne für jede Stichprobe ein KI
ki <- function(x){
t.test(x, conf.level = 0.95)$conf.int
}
kis <- lapply(x_list, ki)
str(kis)
List of 100000
$ : num [1:2] 106 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 102 109
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 109 118
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 102 108
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 109
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 108 117
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 109 118
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 102 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 108 116
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 108 116
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 108 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 108 117
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 102 109
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 103 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 115
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 111
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 106 113
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 114
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 107 116
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 102 109
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 105 112
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 110
..- attr(*, "conf.level")= num 0.95
$ : num [1:2] 104 112
..- attr(*, "conf.level")= num 0.95
[list output truncated]
# Überprüfe für jedes KI, ob das wahre mu der Gumbelverteilung enthalten ist
hit <- function(ki, mu = 100){
mu > ki[1] & mu < ki[2]
}
hits <- unlist(lapply(kis, hit))
# Schätze Konfidenzniveau für den Parameter der Gumbelverteilung
mean(hits)
[1] 0.00183
# Überprüfe für jedes KI, ob der Erwartungswerts enthalten ist
hit_E <- function(ki, mu = 100 + 15 * 0.5772){
mu > ki[1] & mu < ki[2]
}
hits_E <- unlist(lapply(kis, hit_E))
# Schätze das Konfidenzniveau für den Erwartungswert des Merkmals
mean(hits_E)
[1] 0.94739
Fazit: